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Abstract

Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution 
computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the
Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory
that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement
levels exists under certain ellipticity and approximation property conditions. Similar theory needs to
be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and
AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye
model problem will be solved by combining the power of using overlapping grids for complex moving
geometries, AMR, and multilevel elliptic solvers

This work was performed under the auspices of the U. S. Department of Energy
by the University of California, Lawrence Livermore National Laboratory under
Contract No. W-7405-Eng-48.



1 Introduction

Partial differential equations arise in the modeling of various physical, chemical, and biological processes.
Many of these processes exhibit the property of rapidly varying, complex behavior in small regions while
varying relatively smoothly over the larger domain of interest. Other applications require simulations
over widely varying length scales. For accurate numerical modeling of these processes, resolution of
the computational grids must be extremely fine in the regions of complex, local variation. However,
requiring the grids to have the same fine resolution over the whole computational domain is not practical.
For example, three-dimensional simulations of the dynamics of the human heart with a uniformly fine
grid would "require the storage and processing of about 10e10 floating point numbers per timestep" [3].
Similarly, reaction chambers in industrial boilers have characteristic dimensions ranging from meters to
tens of meters, while the inlets for introducing oxidizers and reactants have dimensions on the order of
millimeters [2].

Adaptive Mesh Refinement (AMR) [2], [5], [6], [7], is a numerical technique for locally tailoring
the resolution of computationM grids. AMR permits the addition of finer locM grids to the global
computational grid in an adaptive manner so as to permit locally more accurate computations or removal
of the global error introduced by local singularities. Through the introduction of mesh points driven
by unresolved error in the computation, typically one to two orders of improvement in efficiency can
be obtained. Thus, AMR approaches are extremely attractive. It is in this context that multilevel,
adaptive, iterative elliptic solvers exhibiting convergence rates independent of the number of refinement
levels and scalability in a parallel environment become extremely important. Algorithms described in
the following sections represent an important step in that direction. This paper is organized as follows.
Section 2 provides a brief introduction to a class of multilevel, adaptive solvers - the Fast Composite
Grid methods [7], [8], [9], [11]. Section 3 describes an application that models the motion of the aqueous
humor and the iris in the human eye. Section 4 describes preliminary work that has been done. Section
5 presents conclusions and plans for further research.

2 Fast Adaptive Composite Grid Methods - A brief overview

In this section, three existing algorithms for the solution of elliptic equations on adaptive grids are
briefly sketched: the Fast Adaptive Composite Grid method (FAC) [11]; Asynchronous FAC (AFAC)
[9], [10], [11], and the AFACx variant [7]. FAC belongs to the class of multiplicative algorithms, while
AFAC and AFACx are additive algorithms that allow for asynchronous processing of refinement levels
(particularly important for parallel computation). Multilevel theory exists to show that FAC and AFAC
have convergence rates independent of the number of levels of refinement [8]. Only the two-level theory
exists in the case of AFACx [7]. Numerical experiments reported in [7] imply that AFACx exhibits the
same behavior in the multilevel case.

2.1 Model Problem

Consider a linear, self-adjoint, second-order elliptic problem:

Here, ~t is a bounded open Lipschitz polyhedral region in R~ ( n = 2, 3 ), the matrix {alj(x)} 
symmetric and positive definite with a positive uniform lower bound for almost all x in ~t, and each
aij(x) is a bounded measurable function in ~. Then, equation (1) has a unique solution [1]. Without
loss of generality, we assume u0 = 0.

The variational form corresponding to (1) is: Find u ff ~ (~) such th

a(u,v) = f(v), Vv 6 Hi(a) , (2)



Figure 1: (a) Two nested domains al, ~2 (b) a~nd the associated triangulations f/h, (~2h, ah.

where

~ ix~ ou ovd~a(u,v) = fa Eij ,iJ~ )~ 
(3)

f(v) = fa fvdO.

Note that a(-,-) is a bounded and uniformly elliptic bilinear form on H0~(O) x H0~(fl) and f(-) 
bounded linear functional on H01 (O).
To consider the solution of (1) on partially refined meshes, the following notation is introduced. Suppose
there are J refinement levels associated with a nested sequence f~j C_ O j-1 .. ¯ _C fh = O of bounded open

fohllJLipschitz subdomains and let ~)k = f~k N Ok-1. Define a nested sequence of triangulations t I St=l,

where f~ht= t/iI-l~N’Ii=l is a quasi-uniform triangulation of Ot obtained by a regular dyadic refinement of
elements Ir I-1lMk Mk < Nl-1, which form a "coarse" triangulation of ~)l. For simplicity, let ht bet ik Jk=l’
replaced by h when 1 is understood by context. Let (~h denote the "coarse" triangulation of (~l. Let

W J hz Uk=l ~k denote the composite grid space.

For example, Figure l(a) shows a nested sequence of 2 domains, 02 C 01. f~l is triangulated 
the standard finite element manner into rectangular elements to obtain Oh. This means that 02 has
a "coarse" triangulation (since f~2 C f~l) by elements of h. This " coarse" triangulation of 0 2 i s ~h.
The local "fine" triangulation of f~2, denoted by Oh, is obtained by splitting each element of ~)h into
four smaller rectangular elements as shown in Figure l(b). c =~1[.J 02, is t he composite gridshown
in Figure 2(a). Figure 2(b) shows the uniform sub-grids that form the composite grid.

Define Vk C H~ (f/k), k = 1, 2,... J, to be the associated finite element space and k = Vk-1 ~ Hd(f~k)

to be the restricted local refinement space associated with the local refinement region f~h. V -- V~ =
J Vk

~k=l the associated composite finite element space. The discrete variational problem may be for-
mulated as: Find u~ C V~ such that

(4)

This is equivalent to solving the linear system
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Figure 2: (a) A composite grid (b)Its composition as two uniform sub-grids

where Ac is a symmetric positive definite matrix corresponding to the linear operator defined on the
composite grid.

An iterative correction scheme for solving (5) may be written as follows:

(1) c ~- 0

(2) while ( error in solution > tolerance ) 

(i) r~ +-- fc _ ACu~ ( form the residual )
(ii) solve ACe~ = r~ approximately ( residual equation 

(iii) ~ +- u~ +ec( correct )

The FAC, AFAC, and AFACx algorithms described in the following sections may be viewed in this
residual correction manner. They are characterized by the fact that Step 2(ii) is done by solving
problems on the uniform sub-grids ~h,i = 1,..., J that form the composite grid ~c (Figure 2). The
difference between these variants lies in the order of processing refinement levels and the amount of
computational effort required by each.

2.2 Notation

Suppose we are given the following interlevel transfer operators:

¯ I) : V~ ~ Vk and I~ : Vk ~ Ve denote interlevel transfer operators (restriction and inter-
polation, respectively) between the composite grid space Vc and the space Vk defined over the
k-th refinement level ~h. For example, I~ could be based on linear interpolation and Ick could be
defined as the adjoint of IS.

¯ [) : c ~~kand[~ : ~k ~ Vc denote the i nter level trans fer opera tors (rest riction and
interpolation, respectively) between the composite grid space ~ and the restricted c oarse grid

space ~,k.
k Vk+l Vk ik+l V~

Vk+l¯ I~+z : > and k : ---+ denote the interlevel transfer operators (restriction
hand interpolation, respectively) between the adjacent refinement levels ~h and ~k+l" The operators

IS and I~ may be considered as compositions of these operators.
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¯ i~ : ~k ~ Vk denotes the interpolation operator from the restricted coarse grid ft~ to the local
refinement patch ~.

Suppose we are given the following discrete linear operators:

¯ Ak : Vk ) Vk defined by a(uk,v k) = (Akuk,vk), Vuk,v k C Vk,

¯ _~k :~k ~ ~k defined by a(uk,v k) = (ftkuk,vk), Vuk,vk C ~k,

where (., .) is the L2(~) inner product. In addition, let fk k be theright-hand sideassociated with

the discrete linear system Akuk = fk, and fk E ~k be the right-hand side associated with the linear
system Akuk = ]k, 0 < k < J.

Finally, suppose we are given the following relaxation operators:

¯ Rk(.; fk) : k __~ Vk and/~k(’; ] k) : ~k __~ ~} d enote smoothers that are mutually a djoint o n ~
(Rk -*= Rk) with respect to (., .).

2.3 FAC Algorithm

One iteration of FAC consists of the following basic steps:

(i). For all k E {0, 1,..., J}, set the initial guess k =0 and compute fkby transferring thecomposite
k cgrid residual to ~h: fk t--- I~ (f -- ACuC).

(ii). Set k = 0, so that we start the computation on the coarsest grid, ~h.

(iii). Given the initiM guess and composite grid residuals on level k, use multigrid (or, alternatively,
any direct or iterative solver) to compute a correction local to that level, that is, update the
approximation, uk, to the solution of the error equation Akuk : fk on ~h.

(iv). If k < J, then:

(a) Interpolate the "solution" uk (resulting from step (iii)) at the interface of levels h and
h h

~k+l to supply ~tk+1 with complete boundary conditions, so that its correction equation
(Ak+luk+l = fk+l) is properly posed.

(b) Interpolate it also to (the interior of) ~k+l to act as the initial guess for uk+l: uk+l ~
Ik+luk"

(c) k ( k + 1; go to (iii).

Else, if k = J, then interpolate all corrections (i.e., "solutions" of each level’s projected composite
grid residual equations) from the finest level in each region (i.e., h ~/k/~k+l) to the composite grid

v-,d ~c k~c, and correct the composite grid solution: u~ ~ uC + ?-~k=o l~u .

As can be seen from this description, FAC is multiplicative, meaning that it can be represented as a
product of linear operators. Multiplicative algorithms are sequential in nature since each operation
depends on its predecessor. This sequentialness makes them less attractive in a parallel environment.

2.4 AFAC Algorithm

The FAC algorithm attempts to resolve all components of the solution to the composite grid error
equation that "live" on a refinement level. The Asynchronous Fast Adaptive Composite Grid (AFAC)
method ([9] and [10]) is based on recognizing the fact that it is sufficient to resolve components of the
solution to the composite grid error equation that can only be represented at that refinement level.
This objective is not dependent on resolving components of the solution to the error equation that "live"
on coarser or finer levels, so it provides for independent level processing.

The principal step in AFAC is the computation of an approximation to the oscillatory component
of the solution on each composite grid level.

Loosely speaking, one AFAC iteration consists of the following basic steps:

(i). For all k C {0, 1,..., J}, compute fk by transferring the composite grid residual to ~h and similarly

for ]~: f~ ~ ~(f~ - A~u~), ]~ ~-- i~(f ~ - A~uO).



(ii). For all k E {0... J}, set the initial guesses k =0 on~h and~k =0 on ~h.

(iii). For all grid levels ~h (k e {0, 1,..., J}):

(a) Use multigrid (or, alternatively, any direct or fast iterative solver) to compute a correction
local to that level, that is, update the approximation uk ( resp. ~k) to the solution of the

error equation Akuk = fk (resp..~k~k = /k) on ~h (resp. gth).
(b) Subtract the restricted grid "solution" ~k from the local grid "solution" uk. This forms the

"oscillatory components".

(iv). Interpolate and add the "oscillatory components" on all of ft~ for all k E {0, 1,..., J} to all finer

composite levels: uc ~ u~ + ISu° + EJ:l(I~u k - lurk).

AFAC appears to have near optimal complexity in a parallel computing environment because it
allows for simultaneous processing of all levels of refinement. This is important because the solution
process on each grid, even with the best solvers, dominates computational complexity. This is especially
true for systems of equations where the solution process is significantly more computation intensive than
the evaluation of the residuals. Coupled with multigrid processing of each level and nested iteration on
the composite grids, AFAC is usually able to solve the composite grid equations in a time proportional
to what it would take to solve the global grid alone. See Hart and McCormick [9] and McCormick [11]
for further details.

2.5 The AFACx Algorithm

As described, AFAC removes the sequential nature of the FAC algorithm. However, it is possible to
further reduce the computational effort at a given level. The basic idea is: at a given refinement level
e, resolve components of the solution to the composite grid residual equation that "live" only on that
level. Hence, it is now sufficient to perform relaxation on that level and the restricted coarse grid (/h
before computing the difference. The AFACx algorithm is an expression of these concepts.

Given the composite grid right-hand side f~ and initial approximation u~, then one cycle of AFACx

based on one relaxation sweep per level ~h and one sweep per level on ~h is given by the following:

(i). For all k ¯ {0, 1,..., J}, compute fk by transferring the composite grid residual to ~h, and

similarly for /k : fk < i~(f~_ dCu~), ]k ( ]kc(f~_ A~u~).
-h(ii). For all k ¯ {0... J}, set the initial guess uk = 0 on ~h and similarly set fik = 0 on ~tk.

(iii). For all k ̄  {0, 1,..., J}:

(a) Relax on the restricted coarse grid equation _~k~k = ]k on ~th: ~k ~tk(~tk, ]k ).

(b) Interpolate the "solution" ~k to the local fine grid ~h and relax again using the local fine
grid right hand side fk to obtain the fine grid "solution" uk: uk ~ Rk(i~(tk; fk).

(C)Subtract the restricted grid "solution" from the local grid "solution." This forms the "oscil-
latory components".

(iv). Interpolate and add the "oscillatory components" on all of h for al l k ¯ {0, 1, ..., J} to all finer
composite levels: u~ +--- u~ + I~u° + ~g=l (I~uk- I~Uk).’¢-

AFACx is computationally much cheaper than AFAC because at each level, it requires only relaxing
on the refinement level and the restricted coarse grid.

2.6 A comparison of FAC, AFAC, and AFACx

All three algorithms share some common advantages. Grids at the same refinement level can be processed
in parallel. This is important in a distributed computing environment. The use of uniform sub-grids
at a given refinement level leads to uniform stencils, simplified data structures, the ability to re-use
existing global grid solvers, and facilitates supporting theory.

Though FAC exhibits a reasonable degree of parallelism, and shares the attributes given above, it is
hampered by its inability to process different refinement levels asynchronously. This is a severe drawback
in a distributed environment, where processors owning fine grids are forced to wait for processors owning



coarse grids (during computing the corrections on each level), and vice versa (during the computation
of residuals). AFAC removes this drawback. Hence, it is able to exploit both task and data parallelism
to a greater degree than FAC. However, it performs redundant calculations on each refinement level by
attempting to resolve all components of the solution to the residual correction equation that exist on a
given level.

AFACx was developed as a recognition of this fact. The computation at each level is now the cost
of relaxing on the residual equation at that level. This represents a major reduction in computational
cost. In addition, unlike FAC and AFAC, AFACx requires only an additional restricted coarse grid
associated with each fine grid patch. Since, each fine grid patch was developed over a coarse grid, the
existence of such a restricted patch is always guaranteed, and issues arising from successive coarsenings
of overlapping grids may be avoided. It is important to note that these advantages are gained with no
additional degradation of the convergence rates associated with AFAC.

3 Application problem

In this section, a prototype application problem is briefly discussed, followed by a description of the
mathematical model for the physical problem. A FOSLS formulation of the problem is presented.
Finally, a solution methodology that leverages the strengths of AMR on overlapping grids is proposed.

Anterior
Chamber’

Fluid Forms

Fluid Exits Here

Figure 3: Eye structure and an adaptive overlapping grid.

3.1 A biological problem

The anterior chamber of the human eye is bounded by the cornea, the iris, the pupil, and the lens.
The cornea is transparent, while the iris is pigmented and is responsible for the "color" of the eye. The
anterior chamber is filled with a fluid called the aqueous humor, which is generated by the ciliary body
and is drained out through the trabecular meshwork that is approximately 1/50th of an inch wide. The
aqueous humor supplies nutrients to the lens and the cornea and removes waste generated as a result
of metabolism in these tissues. The aqueous humor also provides the necessary pressure to maintain
the shape of the eye. The pressure within the eye is normally 14-16 mm of Hg and is referred to as the
intraocular pressure (IOP).
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Glaucoma is a medical condition wherein the intraocular pressure increases, leading to the damage
of the optic nerve and subsequent loss of sight. A form of glaucoma occurs when the iris rubs against
the lens and sheds pigment into the aqueous humor. These particles clog the trabecular mesh and fluid
outflow gets restricted, leading to increased intraocular pressure. The increased IOP in turn leads to
the damage of the optic nerve and causes movement of the iris as well. This form of glaucoma is referred
to as pigmentary glaucoma.

3.2 The mathematical formulation

The mathematical formulation of this problem is based on the following assumptions:

(1). The aqueous humor is a viscous, incompressible, slow moving fluid.

(2). The iris is incompressible and impermeable, but moves under the effect of increased intraocular
pressure. It can be modeled using linear elasticity in the incompressible limit.

(3). The distortion/movement of the cornea and the lens due to increased IOP are negligible.

The first assumption enables us to model the flow of the aqueous humor, as Stokes flow within the fluid
domain bounded by the cornea, the iris, and the lens, with the unknowns being the velocity u and the
pressure (IOP) p. The boundary conditions are specified as velocity boundary conditions. The secretion
of fluid from the ciliary body is represented as an inflow and the flow out through the trabecular mesh
is represented as an outflow.

The second and third assumptions form the basis of the model for the elastic region. It is assumed
that no deformation or movement of the cornea and the lens under increased IOP takes place. This
should not be a major restriction and is introduced to simplify the initial mathematical model. The
movement of the iris under pressure from the fluid may be modeled by the equations of linear elasticity.

The coupled elastic-fluid system has two states of interest. The initial state, where the iris is
undeformed, and the final state, where the elastic region is deformed and, consequently, the fluid region
is also deformed. These states shall be referred to as the "rest" and "deformed" states, respectively.

The initial rest position is of interest because it is in this configuration that the equations for linear
elasticity with appropriate boundary conditions are solved. This determines the displacement vector
Ue that eventually translates the elastic region to its final deformed position. It is in this equilibrium
deformed position that the normal components of the elastic stresses on the elastic-fluid boundary will
balance the normal components of the fluid stresses.

The following notation is introduced at this point:

¯ f~: the open, bounded domain that contains the fluid and elastic regions. It is assumed that’this
domain remains invariant.

¯ F: the Lipschitz boundary of f~, assumed to be invariant.

¯ f~/,r, f~,r: the fluid and elastic domains in the rest states, respectively.

¯ f~/,d, f~,d: the fluid and elastic domains in the deformed states, respectively.

¯ F~/: the elastic solid-fluid interface.

¯ Fef,r, Fe/,d : Fef in the rest and deformed states, respectively.

¯ Fu: the portion of the elastic solid-fluid interface that is fixed spatially over time.

¯ F~: the portion of the elastic solid-fluid interface that is allowed to deform over time.

¯ Fi,r, Fi,d : Fi in the rest and deformed states, respectively.

The boundary value problem for the fluid flow region may now be formulated as:
Find u/, p/ such that

-/~ u/+ VPy = 0 in f~/,d,
V’uy ---- 0 in ~-~f,d, (6)

u/ = ~I, on O~’~f,d,



Fi,

e,d

Figure 4: (a) Rest positions of regions (b) Deformed positions

together with the mean pressure condition:

f p:dx = O,~’~ f ,d

where uf represents the fluid velocity, pf the pressure, and ¢ is a known quantity.

(7)

Similarly, the boundary value problem for the elastic region is formulated as:
Find ue, pe such that

-Au~+vp~ =0 infts,r,
V "us = 0 in f~e,r, (8)
Ue = 0 on Fu,

where us represents the displacement, and p, is defined in terms of ue.
On the fluid-solid interface Fi,a, the normal components of the fluid stresses balance the normal com-
ponents of the elastic stresses. Let y = x + ue(x).

n(y). [-(Vu:(y) + (Vu:(y)) t) +p:(y)I] = n(y). [-(rue(x) + (rue(x)) t) +pe(x)I)] on Fi,d (9)

4 Preliminary results

In this section, a few preliminary results are presented that demonstrate the feasibility of the approach
taken.

Initially, 2D and 3D computational grids for the anterior chamber of the eye were generated. These
overlapping grids (Figure 5(a) and 5(b)) were generated using the OGEN grid generation package 
able within the Overture framework[4]. The grids were generated by specifying splines for the boundary
elements and then using sophisticated hyperbolic and elliptic grid generation algorithms available within
OGEN.

Adaptive mesh refinement for curvilinear overlapping grids was implemented and is currently be-
ing tested as part of the AMR++ distribution being developed at the Center for Applied Scientific
Computing, LLNL [6]. An important feature of this approach is that the mapping information used to
generate the coarse grids is available to the solution method at run-time for generating the fine grid

9



Figure 5: (a) 2D computational grid (b) section of a 3D computational grid.

patches. Hence, refinement patches mapped along boundaries resolve the boundary with a higher res-
olution than the coarse grid patches. This is an important benefit of the design of AMR within the
Overture framework.

As a test problem, the incompressible Navier-Stokes equations were solved on the 2D overlapping
grids for the fluid region within the eye (Figure 6) with viscosity y = 0.005. The OverBlown fluid flow
solver for Navier-Stokes equations was used to run these tests.

FAC, AFAC, and AFACx solvers were developed within the AMR++ framework on rectangular
grids to solve a Poisson problem with Dirichlet boundary conditions. The problem was run with upto
ten levels of refinement. Extension of this work to curvilinear coordinate overlapping grids is currently
in progress.

5 Summary

Block structured AMR techniques are an important tool in the simulation of complex processes. Multi-
grid based algorithms such as FAC, AFAC, and AFACx have been successfully applied to study elliptic
problems in simple geometries with AMR. Algorithms such as AFACx are elegantly simple, not sac-
rificing the strengths of uniform global grid solvers (regular stencils, simple data structures, ease of
parallelizing ), while providing an efficient alternative to more complex solution methodologies.

AMR and overlapping grid techniques are powerful concepts in themselves. Combining these tech-
niques in a seamless manner enables us to obtain meaningful results from simulations that might oth-
erwise require either excessive computing power, or fail to resolve fine resolution features appropriately.
Combining the use of AMR with overlapping grid techniques will open the door to simulating com-
plex physical processes in realistic geometries. Together, these tools offer the promise of effectively
and efficiently simulating complex real world problems. Before this becomes reality however, a host of
important theoretical and practical questions arise. Providing answers to some of these questions will
be the aim of this research.
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